THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Tutorial 8 solutions 7th November 2024

- The tutorial solutions are written for reference and proofs will be sketched briefly. You should try to fill in the details as an exercise. Please send an email to echlam@math.cuhk.edu.hk if you have any further questions.
- It is clear that ev_a(f + g) = (f + g)(a) = f(a) + g(a) = ev_a(f) + ev_a(g) and ev_a(fg) = (fg)(a) = f(a)g(a) = ev_a(f)ev_a(g). The kernel is given those f ∈ R[x] where f(a) = 0. By factor theorem, in ev_a(f) = f(a) = 0, then f(x) is divisible by x a, the converse is clearly true, so ker(ev_a) = ⟨x a⟩.
- 2. If R is not commutative, then the polynomial ring is very pathological, for example, recall the quaternion group $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$. We can turn it into a ring by allowing the elements $\{1, i, j, k\}$ to be added formally with no relations, i.e. we define the quaternion numbers to be $Q = \{a_0 + a_1i + a_2j + a_3k : a_i \in \mathbb{R}\}$ with addition the obvious way, multiplication inherited from Q_8 , additive identity 0 + 0i + 0j + 0k and multiplicative identity 1 + 0i + 0j + 0k. In the polynomial ring $Q[x], (x-i)(x+i) = x^2 + 1 = (x+i)(x-i)$, however $(j-i)(j+i) = j^2 ij + ji i^2 = -2ij \neq 2ij = j^2 + ij ji i^2(j+i)(j-i)$. So the evaluation map is not a homomorphism.
- Suppose R is a field, then every nonzero element is invertible, if I is a nonzero ideal, then a ∈ I ⇒ r = ra⁻¹ ⋅ a ∈ I for any ra⁻¹ ∈ I, therefore I = R. So there are only two ideals. Conversely, if I only has two ideals, they are necessarily the whole ring and the zero ideal, therefore for any 0 ≠ a ∈ R, ⟨a⟩ = R and so 1 ∈ I ⇒ 1 = ba = ab for some b ∈ R.
- 4. (a) Suppose $\frac{a}{b}$, $\frac{c}{d}$ are rational so that b, d are not divisible by 3, then in $\frac{ac}{bd}$, $\frac{ad+bc}{bd}$, it is clear that bd is also not divisble by 3. Also $1 = \frac{1}{1}$ with 1 is not divisble by 3, so it is a subring (with unit).
 - (b) By secondary school M2, we know $\cos(mt)\cos(nt) = \frac{1}{2}[\cos(m+n)t + \cos(m-n)t]$, $\sin(mt)\cos(mt) = \frac{1}{2}[\sin(m+n)t + \sin(m-n)t]$, and $\sin(mt)\sin(nt) = \frac{1}{2}[-\cos(m+n)t + \cos(m-n)t]$. So sums and products of $a_0 + \sum_{m=1}^{M} \cos(mt) + \sum_{n=1}^{N} \sin(nt)$ can be written as linear combinations of those functions again. And it contains 0, 1, so it must be a subring.
- 5. The units in \mathbb{Z}_n are given by those k that has an inverse mod n. Suppose that there is $j \in \{1, ..., n\}$ so that $j \cdot k \equiv 1$, then $\underbrace{k+k+\ldots+k}_{j \text{ times}} \equiv 1 \mod n$ implies that k is a

generator of the additive group of \mathbb{Z}_n . From group theory, we know that this only occurs when gcd(k,n) = 1. So there should be $\varphi(n)$ many units in \mathbb{Z}_n , where φ is the Euler totient function.

The group structure is more difficult to identify. One can start by proving that the group of units in \mathbb{Z}_{p^k} is cyclic for p prime, then apply Chinese remainder theorem to obtain that the group of units in \mathbb{Z}_n in general is a product of those of \mathbb{Z}_{p^k} 's, hence is also cyclic.

- 6. Let I, J be ideals, then for $a_1+b_1 \in I+J$ and $a_2+b_2 \in I+J$ clearly $(a_1+b_1)+(a_2+b_2) \in I+J$ and $r(a_1+b_1) = ra_1 + rb_1 \in I+J$ since I, J are ideals, likewise for additive inverse. Now if $a, b \in I \cap J, r \in R$, similarly $a + b, ra, -a \in I \cap J$.
- 7. We have $R \times R'$ with addition forms an abelian group because it's just the product group. Associativity and distributivity of product follows from that of each ring.
- 8. Define a homomorphism R[x] → C by f(x) → f(i). It is a homomorphism because it is the composition R[x] → C[x] → C. Surjectivity follows from the observation a + bx → a + bi. The kernel of this map is given by those f(x) with f(i) = 0. We know the minimal polynomial of i is given by x² + 1 and R[x] is a PID, therefore kernel is ⟨x² + 1⟩. By first isomorphism theorem C ≃ R[x]/⟨x² + 1⟩.
- 9. (Essentially just the Chinese remainder theorem) We can define a homomorphism φ : Z₆ → Z₂ × Z₃ by just taking a ↦ (a mod 2, a mod 3). Since both rings have the same cardinality, we just need to check injectivity: if a ≡ 0 mod 2 and a ≡ 0 mod 3, then a is divisible by both 2 and 3, hence divisible by 6, so a = 0 ∈ Z₆.
- 10. They are not isomorphic. This follows from the observation that if we have an isomorphism Z[x]/⟨2x² + 7⟩ → Z[x]/⟨x² + 7⟩, it must send Z → Z by considering image of 1. In the former ring, -7 is divisible by 2 since 2 ⋅ x² ≡ -7. It follows that in the latter ring, -7 is also divisible by 2. Suppose 2f(x) + ⟨x² + 7⟩ = -7 + ⟨x² + 7⟩, then x² + 7 | 2f(x) + 7. Let's say 2f(x) + 7 = (x² + 7) ∑ⁿ_{k=0} a_kx^k, then

$$2f(x) = \sum_{k=0}^{n} a_k x^{k+2} + \sum_{k=0}^{n} 7a_k x^k - 7$$

= 7(a_0 - 1) + 7a_1 x + $\sum_{k=2}^{n} (a_{k-2} + 7a_k) x^k + a_{n-1} x^{n+1} + a_n x^{n+2}.$

Since 2 divides all the coefficients of the RHS, we deduce that a_0 is odd, a_1 is even, and inductively a_k is even (resp. odd) implies that a_{k+2} is also even (resp. odd). However, a_{n-1} and a_n have to be both even, this gives a contradiction. So -7 cannot be divisible by 2, so there cannot be an isomorphism between the rings.

Remark: There is a simpler proof using "integral elements". Alternatively, one can also try to show that $2(x^2 + 4) = 2x^2 + 8 \equiv 1 + \langle 2x^2 + 7 \rangle$ implies that 2 is invertible, and similar derive a contradiction from showing that 2 cannot be invertible in the other ring.

11. One can first quotient out the integer to obtain Z₆[x]/⟨2x - 1⟩, let's represent the class of f(x) by [f(x)]. We only need to determine the ring structure for the classes [n] where n = 0, ..., 5 and also [x^k], since every other class [f(x)] can be reduced to one of those. we have [0] = [3 ⋅ (2x - 1)] = [6x - 3] = [3], therefore [1] = [4] and [2] = [5]. Now notice that [2x] = 1, so we have [x] = [4x] = [2 ⋅ 2x] = [2]. Therefore, we only have 3 nontrivial classes: [0], [1], [2] and it's clear the ring is isomorphic to Z₃ at this point.
For Z₅[x]/⟨x² + 3⟩, all classes can be reduced to [ax + b]. Notice that 1 = [x² + 4] = [x² - 1] = [x + 1][x + 4], 1 = [x + 2][x + 3] and similarly [3x][x] = [3x²] = [3][2] = [1]. In general, any nonzero a ∈ Z₅ has an inverse (it is a unity since it is coprime to 5), and

for $a \neq 0$, the class $[ax + b] = [a][x + ba^{-1}]$ is invertibe since both [a] and [x + k] are invertible in the ring. Hence, $\mathbb{Z}_5[x]/\langle x^2 + 3 \rangle$ is (the) field of 25 elements.

Remark: That's all we are going to talk about finite fields. There are a lot more to talk about them and you will see them again in Math3040.

- 12. Let's say p is the characteristic of F, then p is a prime otherwise F has zero divisors. Now suppose that another prime q also divides order of F, then applying Cauchy's theorem on the abelian group (F, +) gives a nontrivial element x so that q ⋅ x = 0. But p ⋅ x = 0 following from characteristic. Since the primes are coprime, ap + bq = 1 for some a, b ∈ Z, therefore x = (ap + bq) ⋅ x = ap ⋅ x + bq ⋅ x = 0, which is a contradiction. Therefore fields must have order pⁿ where p = char(F).
- 13. Note that $a = a^2 = (-a)^2 = -a$, so R has characteristic 2.
- 14. (a) For any $\beta \in R'$, we can write $\beta = [f(x)] = [\sum_{k=0}^{n} b_k x^k]$ for some polynomial $f(x) \in R[x]$. Then $\beta = [b_0 + \ldots + b_n x^n] = [(ab_0 + b_1)x + \ldots + b_n x^n] = \ldots = [bx^n]$ where $b = \sum_{k=0}^{n} b_k a^{n-k}$.
 - (b) Suppose that $\varphi(b) = [b] = 0$, then $b \in \langle ax 1 \rangle$, let $p(x) = \sum_{k=0}^{n} c_k x^k \in R[x]$ so that $(ax 1) \sum_{k=0}^{n} c_k x^k = b$ in the polynomial ring. Therefore

$$b = \sum_{k=0}^{n} ac_k x^{k+1} - \sum_{k=0}^{n} c_k x^k = ac_n x^{n+1} + \sum_{k=1}^{n} (ac_{k-1} - c_k) x^k - c_0.$$

Matching the coefficients, we have

$$b = -c_0$$

$$c_1 = ac_0$$

$$\vdots$$

$$c_n = ac_{n-1}$$

$$ac_n = 0$$

Hence $a^n b = 0$. Conversely, if $a^n b = 0$ for some n, then $[b] = [b(ax)^n] = [ba^n x^n] = 0$. So $b \in \ker \varphi$.

(c) Clearly if $a^n = 0$ for large enough n, then by part (a), since every element $\beta \in R'$ can be expressed as $[bx^k]$, we know from part (b) that $[b] = 0 \Leftrightarrow ba^N = 0$ for large enough N, which is guaranteed by assumption. Therefore [b] = 0 for arbitrary $b \in R$ and $[bx^k] = 0$.

Conversely, if R' is the zero ring, then $1 \in R$ is in the kernel of φ , therefore by part (b), $a^n \cdot 1 = a^n = 0$ for some n.

- (a) Reduction mod 2: the polynomial becomes x³ + x + 1 ∈ Z₂[x]. We can directly check that it has no roots, so it must be irreducible. (If it was reducible, it has contains a degree 1 factor, which means that it has a root.) Irreducibility over Z₂ implies irreducibility over Q.
 - (b) Eisenstein's criterion for p = 3 gives the desired result, since the top degree coefficient is not divisible by 3, while all other coefficients are. And the constant coefficient is not divisible by 9.

- (c) $f(1) = 0 \in \mathbb{Z}_p$, so it must be reducible. Alternatively, one can expand and check that $f(x+1) = x^{p-1} \in \mathbb{Z}_p[x]$.
- (d) One can check in $\mathbb{Z}_2[x]$. It has no roots so it cannot have linear factors. So it was reducible, it must be the product of two degree 2 polynomials. But there is only one irreducible degree 2 polynomials over $\mathbb{Z}_2[x]$, which is $x^2 + x + 1$. So if $x^4 x 1$ was reducible, it has to be $(x^2 + x + 1)^2$. One can easily check that it gives a contradiction. So f(x) is irreducible in $\mathbb{Z}_2[x]$ and hence in $\mathbb{Q}[x]$.
- (e) It is reducible since $(x + iy)(x iy) = x^2 + y^2 \in \mathbb{C}[x, y]$.
- (f) If $f(x,y) = y x^2$ was reducible, because it is a degree two polynomial, we know $y x^2 = (a + bx + cy)(d + ex + fy) = ad + bex^2 + cfy^2 + (ae + bd)x + (af + cd)y + (bf + ce)xy.$

Right away we get ad = cf = ae + bd = bf + ce = 0. So a or d is 0 and c or f is 0. From af + cd = 1, we only have two cases a = f = 0 or c = d = 0.

In the first case, a = f = 0. Since 0 = ae + bd = bd and $d \neq 0$, we have b = 0. So $bex^2 = 0x^2$, which is a contradiction.

In the second case, c = d = 0. Since 0 = ae + bd = ae and $a \neq 0$, we must have e = 0. So $bex^2 = 0x^2$, which is a contradiction.

Remark: If anything, this highlights how difficult it is to prove whether a polynomial is reducible or not, we are only looking at degree two polynomials in two variables.

16. (a) If -1 is a square in \mathbb{Z}_p , say $-1 = a^2$, then we have

$$X^{4} + 1 = X^{4} - a^{2} = (X^{2} + a)(X^{2} - a).$$

(b) If p is odd and 2 is a square in \mathbb{Z}_p , say $2 = b^2$, then we have

$$X^{4} + 1 = (X^{2} + 1)^{2} - (bX)^{2} = (X^{2} + bX + 1)(X^{2} - bX + 1).$$

(c) If p is odd and neither -1 nor 2 is a square, since \mathbb{Z}_p^{\times} is a cyclic group of even order, we know -1, 2 are odd order elements, therefore then their product -2 is an even order element, hence a square, say $-2 = c^2$. Then we have

$$X^{4} + 1 = (X^{2} - 1)^{2} - (cX)^{2} = (X^{2} - cX - 1)(X^{2} + cX - 1).$$