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* The tutorial solutions are written for reference and proofs will be sketched briefly. You
should try to fill in the details as an exercise. Please send an email to echlam @math.cuhk.edu.hk
if you have any further questions.

. Ttisclearthatev,(f+¢g) = (f+9g)(a) = f(a)+ g(a) = eva(f) +eva(g) and ev,(fg) =
(fg)(a) = f(a)g(a) = evy(f)eva(g). The kernel is given those f € R[z] where f(a) =
0. By factor theorem, in ev,(f) = f(a) = 0, then f(x) is divisible by = — a, the converse
is clearly true, so ker(ev,) = (x — a).

2. If R is not commutative, then the polynomial ring is very pathological, for example,
recall the quaternion group Qs = {1, —1,4, —i, j, —j, k, —k}. We can turn it into a ring by
allowing the elements {1, , 7, k} to be added formally with no relations, i.e. we define the
quaternion numbers to be Q) = {ag+a1i+ asj +ask : a; € R} with addition the obvious
way, multiplication inherited from (Js, additive identity 0+ 07407 + 0k and multiplicative
identity 1+-0i+0;+0k. In the polynomial ring Q[z], (z—i)(z+1) = z°+1 = (z+1i)(x—1),
however (j —1i)(j +14) = j2 —ij +ji—i> = —2ij # 2ij = j2+1ij—ji—i*(j +i)(j —1).
So the evaluation map is not a homomorphism.

Suppose R is a field, then every nonzero element is invertible, if  is a nonzero ideal, then
a€l=r=ra?! aclforanyra=' € I, therefore I = R. So there are only two
ideals. Conversely, if I only has two ideals, they are necessarily the whole ring and the
zero ideal, therefore forany 0 # a € R, (a) = Randso 1 € [ = 1 = ba = ab for some
beR.

4. (a) Suppose ¢, < are rational so that b, d are not d1V1Slble by 3, then in 77, “dbtlbc, it is

clear that bd is also not divisble by 3. Also 1 = I with 1 is not divisble by 3, so it is
a subring (with unit).

(b) By secondary school M2, we know cos(mt) cos(nt) = 3 [cos(m + n)t + cos(m —
n)t], sin(mt) cos(mt) = 1[sin(m + n)t + sin(m — n)t], and sin(mt) sin(nt) =
5[ cos(m 4 n)t + cos(m — n)t]. So sums and products of ag + SM cos(mt) +
ZnNzl sin(nt) can be written as linear combinations of those functions again. And
it contains 0, 1, so it must be a subring.

. The units in Z,, are given by those k& that has an inverse mod n. Suppose that there is
je{l,.,n}sothatj -k = 1,thenk+k+..+k = 1 mod n implies that k is a
—_———
j times
generator of the additive group of Z,,. From group theory, we know that this only occurs
when ged(k,n) = 1. So there should be ¢(n) many units in Z,, where ¢ is the Euler
totient function.

The group structure is more difficult to identify. One can start by proving that the group
of units in Z, is cyclic for p prime, then apply Chinese remainder theorem to obtain that
the group of units in Z,, in general is a product of those of Z,x’s, hence is also cyclic.
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Let I, J be ideals, then for a;+b; € [+J and as+by € [+ J clearly (a;+b;)+(az+by) €
I+ Jand r(ay + b)) = ray +rby € I 4+ J since I, J are ideals, likewise for additive
inverse. Now if a, 0 € INJ,r € R, similarly a + b,ra, —a € I N J.

. We have R x R’ with addition forms an abelian group because it’s just the product group.

Associativity and distributivity of product follows from that of each ring.

. Define a homomorphism R[z] — C by f(z) +— f(i). It is a homomorphism because

it is the composition R[x] < Clz] Z¥ C. Surjectivity follows from the observation
a + bx — a + bi. The kernel of this map is given by those f(z) with f(i) = 0. We
know the minimal polynomial of i is given by x* + 1 and R[] is a PID, therefore kernel
is (2% + 1). By first isomorphism theorem C = R[z]/(z? + 1).

. (Essentially just the Chinese remainder theorem) We can define a homomorphism ¢ :

Zg — Zo X Z3 by just taking a — (@ mod 2,a mod 3). Since both rings have the same
cardinality, we just need to check injectivity: if a =0 mod 2and a =0 mod 3, then a
is divisible by both 2 and 3, hence divisible by 6, so a = 0 € Zg.

They are not isomorphic. This follows from the observation that if we have an isomor-
phism Z[z|/(22* + 7) — Z[x]/{x® + 7), it must send Z — Z by considering image
of 1. In the former ring, —7 is divisible by 2 since 2 - 22 = —7. It follows that in the
latter ring, —7 is also divisible by 2. Suppose 2f(z) + (z* + 7) = —7 + (2% + 7), then
22+ 7| 2f(x)+ 7. Letssay 2f(z) + 7= (22 + 7)Y _,_, axz”, then

n n

2f(x) = Z apx™? 4 Z Taga® — 7

k=0 k=0

=T(ag — 1)+ Tayxr + Z(ak_z + Tap)z® + ap 12" + a2
k=2

Since 2 divides all the coefficients of the RHS, we deduce that ag is odd, a; is even, and
inductively ay is even (resp. odd) implies that ay, o is also even (resp. odd). However,
a,—1 and a, have to be both even, this gives a contradiction. So —7 cannot be divisible
by 2, so there cannot be an isomorphism between the rings.

Remark: There is a simpler proof using “integral elements”. Alternatively, one can also
try to show that 2(z? + 4) = 222 + 8 = 1 + (22 + 7) implies that 2 is invertible, and
similar derive a contradiction from showing that 2 cannot be invertible in the other ring.

One can first quotient out the integer to obtain Zg[x]/(2x — 1), let’s represent the class
of f(x) by [f(x)]. We only need to determine the ring structure for the classes [n| where
n = 0,...,5 and also [z¥], since every other class [f(z)] can be reduced to one of those.
we have [0] = [3 - (2¢ — 1)] = [6x — 3] = [3], therefore [1] = [4] and [2] = [5]. Now
notice that [2z] = 1, so we have [z] = [4z] = [2 - 2] = [2]. Therefore, we only have 3
nontrivial classes: [0], [1], [2] and it’s clear the ring is isomorphic to Zs at this point.

For Zs[z]/(x* + 3), all classes can be reduced to [azx + b]. Notice that 1 = [z* + 4] =
(22 — 1] = [z + 1][z + 4], 1 = [z + 2][z + 3] and similarly [3z][z] = [32?] = [3][2] = [1].
In general, any nonzero a € Zs has an inverse (it is a unity since it is coprime to 5), and
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for a # 0, the class [ax + b] = [a][z + ba™'] is invertibe since both [a] and [z + k| are
invertible in the ring. Hence, Zs[x]/(x? + 3) is (the) field of 25 elements.

Remark: That’s all we are going to talk about finite fields. There are a lot more to talk
about them and you will see them again in Math3040.

Let’s say p is the characteristic of /', then p is a prime otherwise F' has zero divisors. Now
suppose that another prime ¢ also divides order of /', then applying Cauchy’s theorem on
the abelian group (F,+) gives a nontrivial element x so that ¢ - =z = 0. Butp -z = 0
following from characteristic. Since the primes are coprime, ap + bg = 1 for some
a,b € Z, therefore x = (ap + bq) - © = ap - x + bq - * = 0, which is a contradiction.
Therefore fields must have order p” where p = char(F).

13. Note that a = a* = (—a)? = —a, so R has characteristic 2.
14. (a) For any 8 € R/, we can write 8 = [f(z)] = [>_,_, bxa"*] for some polynomial
f(z) € R[z]. Then 5 = [by + ... + byz™| = [(abo + b1)x + ... + bya"] = ... = [ba"]

15.

(b)

©

(a)

(b)

where b = Y} _ bra™ "

Suppose that ¢(b) = [b] = 0, then b € (ax — 1), let p(x) = > _, ek € R[z] so
that (az — 1) >",_, cxz® = b in the polynomial ring. Therefore
b= Z acprktt — Z cpx® = ac,a™t + Z(ack_l — ¢zt — c.
k=0 k=0 k=1

Matching the coefficients, we have

ey _CO
C1 = acCy
Cn = ACp—1
ac, =0
Hence a"b = 0. Conversely, if a”b = 0 for some n, then [b] = [b(ax)"] = [ba"a™] =

0. So b € ker .

Clearly if a™ = 0 for large enough n, then by part (a), since every element 5 € R’
can be expressed as [bz*], we know from part (b) that [b)] = 0 < ba" = 0 for
large enough N, which is guaranteed by assumption. Therefore [b] = 0 for arbitrary
b€ Rand [bz*] = 0.

Conversely, if R’ is the zero ring, then 1 € R is in the kernel of ¢, therefore by part
(b), a™ - 1 = a™ = 0 for some n.

Reduction mod 2: the polynomial becomes 2* + x + 1 € Zy[z]. We can directly
check that it has no roots, so it must be irreducible. (If it was reducible, it has
contains a degree 1 factor, which means that it has a root.) Irreducibility over Z,
implies irreducibility over Q.

Eisenstein’s criterion for p = 3 gives the desired result, since the top degree co-
efficient is not divisible by 3, while all other coefficients are. And the constant
coefficient is not divisible by 9.
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(c)

(d)

(e)
®

(a)

(b)

f(1) = 0 € Z,, so it must be reducible. Alternatively, one can expand and check
that f(x + 1) = 2?7 € Z,[z].

One can check in Zy|z]. It has no roots so it cannot have linear factors. So it was
reducible, it must be the product of two degree 2 polynomials. But there is only one
irreducible degree 2 polynomials over Z,[z], whichis 22 + x + 1. Soif 2 — 2 — 1
was reducible, it has to be (z? + x + 1)%. One can easily check that it gives a
contradiction. So f(z) is irreducible in Zy[x] and hence in Q[z].

It is reducible since (z + iy)(z — iy) = 2* + y* € C[z, y].

If f(z,y) = y — 2% was reducible, because it is a degree two polynomial, we know
y— 2% = (a+bx + cy)(d + ex + fy) = ad + bex® + cfy* + (ae + bd)x + (af +
cd)y + (bf + ce)xy.

Right away we getad = c¢f = ae+bd =bf +ce =0. SoaordisOandcor fis
0. From af + cd = 1, we only have twocasesa = f =0 orc=d = 0.

In the first case, a = f = 0. Since 0 = ae + bd = bd and d # 0, we have b = 0. So
bex? = 0z2, which is a contradiction.

In the second case, ¢ = d = 0. Since 0 = ae + bd = ae and a # 0, we must have
e = 0. So bex? = 0x2, which is a contradiction.

Remark: If anything, this highlights how difficult it is to prove whether a polynomial
is reducible or not, we are only looking at degree two polynomials in two variables.

If —1 is a square in Z,, say —1 = a?, then we have
Xtr1=X*"—a*=(X?+a)(X?—a).
If pis odd and 2 is a square in Z,, say 2 = b2, then we have

X4 1=(X24+1)7? - (bX)? = (X2 +bX + 1)(X2—bX +1).

(c) If pis odd and neither —1 nor 2 is a square, since Z,; is a cyclic group of even order,

we know —1, 2 are odd order elements, therefore then their product —2 is an even
order element, hence a square, say —2 = c2. Then we have

Xt r1=(X?-12—(cX)P?=(X?—cX - 1D(X?*+cX —1).



