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1. It is clear that eva(f + g) = (f + g)(a) = f(a)+ g(a) = eva(f)+ eva(g) and eva(fg) =
(fg)(a) = f(a)g(a) = eva(f)eva(g). The kernel is given those f ∈ R[x] where f(a) =
0. By factor theorem, in eva(f) = f(a) = 0, then f(x) is divisible by x− a, the converse
is clearly true, so ker(eva) = ⟨x− a⟩.

2. If R is not commutative, then the polynomial ring is very pathological, for example,
recall the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k}. We can turn it into a ring by
allowing the elements {1, i, j, k} to be added formally with no relations, i.e. we define the
quaternion numbers to be Q = {a0+a1i+a2j+a3k : ai ∈ R} with addition the obvious
way, multiplication inherited from Q8, additive identity 0+0i+0j+0k and multiplicative
identity 1+0i+0j+0k. In the polynomial ring Q[x], (x−i)(x+i) = x2+1 = (x+i)(x−i),
however (j− i)(j+ i) = j2− ij+ ji− i2 = −2ij ̸= 2ij = j2+ ij− ji− i2(j+ i)(j− i).
So the evaluation map is not a homomorphism.

3. Suppose R is a field, then every nonzero element is invertible, if I is a nonzero ideal, then
a ∈ I =⇒ r = ra−1 · a ∈ I for any ra−1 ∈ I , therefore I = R. So there are only two
ideals. Conversely, if I only has two ideals, they are necessarily the whole ring and the
zero ideal, therefore for any 0 ̸= a ∈ R, ⟨a⟩ = R and so 1 ∈ I =⇒ 1 = ba = ab for some
b ∈ R.

4. (a) Suppose a
b
, c
d

are rational so that b, d are not divisible by 3, then in ac
bd
, ad+bc

bd
, it is

clear that bd is also not divisble by 3. Also 1 = 1
1

with 1 is not divisble by 3, so it is
a subring (with unit).

(b) By secondary school M2, we know cos(mt) cos(nt) = 1
2
[cos(m + n)t + cos(m −

n)t], sin(mt) cos(mt) = 1
2
[sin(m + n)t + sin(m − n)t], and sin(mt) sin(nt) =

1
2
[− cos(m+ n)t+ cos(m− n)t]. So sums and products of a0 +

∑M
m=1 cos(mt) +∑N

n=1 sin(nt) can be written as linear combinations of those functions again. And
it contains 0, 1, so it must be a subring.

5. The units in Zn are given by those k that has an inverse mod n. Suppose that there is
j ∈ {1, ..., n} so that j · k ≡ 1, then k + k + ...+ k︸ ︷︷ ︸

j times

≡ 1 mod n implies that k is a

generator of the additive group of Zn. From group theory, we know that this only occurs
when gcd(k, n) = 1. So there should be φ(n) many units in Zn, where φ is the Euler
totient function.

The group structure is more difficult to identify. One can start by proving that the group
of units in Zpk is cyclic for p prime, then apply Chinese remainder theorem to obtain that
the group of units in Zn in general is a product of those of Zpk’s, hence is also cyclic.



6. Let I, J be ideals, then for a1+b1 ∈ I+J and a2+b2 ∈ I+J clearly (a1+b1)+(a2+b2) ∈
I + J and r(a1 + b1) = ra1 + rb1 ∈ I + J since I, J are ideals, likewise for additive
inverse. Now if a, b ∈ I ∩ J , r ∈ R, similarly a+ b, ra,−a ∈ I ∩ J .

7. We have R×R′ with addition forms an abelian group because it’s just the product group.
Associativity and distributivity of product follows from that of each ring.

8. Define a homomorphism R[x] → C by f(x) 7→ f(i). It is a homomorphism because
it is the composition R[x] ↪→ C[x] evi→ C. Surjectivity follows from the observation
a + bx 7→ a + bi. The kernel of this map is given by those f(x) with f(i) = 0. We
know the minimal polynomial of i is given by x2 + 1 and R[x] is a PID, therefore kernel
is ⟨x2 + 1⟩. By first isomorphism theorem C ∼= R[x]/⟨x2 + 1⟩.

9. (Essentially just the Chinese remainder theorem) We can define a homomorphism ϕ :
Z6 → Z2×Z3 by just taking a 7→ (a mod 2, a mod 3). Since both rings have the same
cardinality, we just need to check injectivity: if a ≡ 0 mod 2 and a ≡ 0 mod 3, then a
is divisible by both 2 and 3, hence divisible by 6, so a = 0 ∈ Z6.

10. They are not isomorphic. This follows from the observation that if we have an isomor-
phism Z[x]/⟨2x2 + 7⟩ → Z[x]/⟨x2 + 7⟩, it must send Z → Z by considering image
of 1. In the former ring, −7 is divisible by 2 since 2 · x2 ≡ −7. It follows that in the
latter ring, −7 is also divisible by 2. Suppose 2f(x) + ⟨x2 + 7⟩ = −7 + ⟨x2 + 7⟩, then
x2 + 7 | 2f(x) + 7. Let’s say 2f(x) + 7 = (x2 + 7)

∑n
k=0 akx

k, then

2f(x) =
n∑

k=0

akx
k+2 +

n∑
k=0

7akx
k − 7

= 7(a0 − 1) + 7a1x+
n∑

k=2

(ak−2 + 7ak)x
k + an−1x

n+1 + anx
n+2.

Since 2 divides all the coefficients of the RHS, we deduce that a0 is odd, a1 is even, and
inductively ak is even (resp. odd) implies that ak+2 is also even (resp. odd). However,
an−1 and an have to be both even, this gives a contradiction. So −7 cannot be divisible
by 2, so there cannot be an isomorphism between the rings.

Remark: There is a simpler proof using ”integral elements”. Alternatively, one can also
try to show that 2(x2 + 4) = 2x2 + 8 ≡ 1 + ⟨2x2 + 7⟩ implies that 2 is invertible, and
similar derive a contradiction from showing that 2 cannot be invertible in the other ring.

11. One can first quotient out the integer to obtain Z6[x]/⟨2x − 1⟩, let’s represent the class
of f(x) by [f(x)]. We only need to determine the ring structure for the classes [n] where
n = 0, ..., 5 and also [xk], since every other class [f(x)] can be reduced to one of those.
we have [0] = [3 · (2x − 1)] = [6x − 3] = [3], therefore [1] = [4] and [2] = [5]. Now
notice that [2x] = 1, so we have [x] = [4x] = [2 · 2x] = [2]. Therefore, we only have 3
nontrivial classes: [0], [1], [2] and it’s clear the ring is isomorphic to Z3 at this point.

For Z5[x]/⟨x2 + 3⟩, all classes can be reduced to [ax + b]. Notice that 1 = [x2 + 4] =
[x2 − 1] = [x+ 1][x+ 4], 1 = [x+ 2][x+ 3] and similarly [3x][x] = [3x2] = [3][2] = [1].
In general, any nonzero a ∈ Z5 has an inverse (it is a unity since it is coprime to 5), and



for a ̸= 0, the class [ax + b] = [a][x + ba−1] is invertibe since both [a] and [x + k] are
invertible in the ring. Hence, Z5[x]/⟨x2 + 3⟩ is (the) field of 25 elements.

Remark: That’s all we are going to talk about finite fields. There are a lot more to talk
about them and you will see them again in Math3040.

12. Let’s say p is the characteristic of F , then p is a prime otherwise F has zero divisors. Now
suppose that another prime q also divides order of F , then applying Cauchy’s theorem on
the abelian group (F,+) gives a nontrivial element x so that q · x = 0. But p · x = 0
following from characteristic. Since the primes are coprime, ap + bq = 1 for some
a, b ∈ Z, therefore x = (ap + bq) · x = ap · x + bq · x = 0, which is a contradiction.
Therefore fields must have order pn where p = char(F ).

13. Note that a = a2 = (−a)2 = −a, so R has characteristic 2.

14. (a) For any β ∈ R′, we can write β = [f(x)] = [
∑n

k=0 bkx
k] for some polynomial

f(x) ∈ R[x]. Then β = [b0 + ...+ bnx
n] = [(ab0 + b1)x+ ...+ bnx

n] = ... = [bxn]
where b =

∑n
k=0 bka

n−k.

(b) Suppose that φ(b) = [b] = 0, then b ∈ ⟨ax − 1⟩, let p(x) =
∑n

k=0 ckx
k ∈ R[x] so

that (ax− 1)
∑n

k=0 ckx
k = b in the polynomial ring. Therefore

b =
n∑

k=0

ackx
k+1 −

n∑
k=0

ckx
k = acnx

n+1 +
n∑

k=1

(ack−1 − ck)x
k − c0.

Matching the coefficients, we have

b = −c0

c1 = ac0
...

cn = acn−1

acn = 0

Hence anb = 0. Conversely, if anb = 0 for some n, then [b] = [b(ax)n] = [banxn] =
0. So b ∈ kerφ.

(c) Clearly if an = 0 for large enough n, then by part (a), since every element β ∈ R′

can be expressed as [bxk], we know from part (b) that [b] = 0 ⇔ baN = 0 for
large enough N , which is guaranteed by assumption. Therefore [b] = 0 for arbitrary
b ∈ R and [bxk] = 0.
Conversely, if R′ is the zero ring, then 1 ∈ R is in the kernel of φ, therefore by part
(b), an · 1 = an = 0 for some n.

15. (a) Reduction mod 2: the polynomial becomes x3 + x + 1 ∈ Z2[x]. We can directly
check that it has no roots, so it must be irreducible. (If it was reducible, it has
contains a degree 1 factor, which means that it has a root.) Irreducibility over Z2

implies irreducibility over Q.

(b) Eisenstein’s criterion for p = 3 gives the desired result, since the top degree co-
efficient is not divisible by 3, while all other coefficients are. And the constant
coefficient is not divisible by 9.



(c) f(1) = 0 ∈ Zp, so it must be reducible. Alternatively, one can expand and check
that f(x+ 1) = xp−1 ∈ Zp[x].

(d) One can check in Z2[x]. It has no roots so it cannot have linear factors. So it was
reducible, it must be the product of two degree 2 polynomials. But there is only one
irreducible degree 2 polynomials over Z2[x], which is x2 + x+ 1. So if x4 − x− 1
was reducible, it has to be (x2 + x + 1)2. One can easily check that it gives a
contradiction. So f(x) is irreducible in Z2[x] and hence in Q[x].

(e) It is reducible since (x+ iy)(x− iy) = x2 + y2 ∈ C[x, y].
(f) If f(x, y) = y − x2 was reducible, because it is a degree two polynomial, we know

y − x2 = (a+ bx+ cy)(d+ ex+ fy) = ad+ bex2 + cfy2 + (ae+ bd)x+ (af +
cd)y + (bf + ce)xy.

Right away we get ad = cf = ae + bd = bf + ce = 0. So a or d is 0 and c or f is
0. From af + cd = 1, we only have two cases a = f = 0 or c = d = 0.
In the first case, a = f = 0. Since 0 = ae+ bd = bd and d ̸= 0, we have b = 0. So
bex2 = 0x2, which is a contradiction.
In the second case, c = d = 0. Since 0 = ae + bd = ae and a ̸= 0, we must have
e = 0. So bex2 = 0x2, which is a contradiction.
Remark: If anything, this highlights how difficult it is to prove whether a polynomial
is reducible or not, we are only looking at degree two polynomials in two variables.

16. (a) If −1 is a square in Zp, say −1 = a2, then we have

X4 + 1 = X4 − a2 = (X2 + a)(X2 − a).

(b) If p is odd and 2 is a square in Zp, say 2 = b2, then we have

X4 + 1 = (X2 + 1)2 − (bX)2 = (X2 + bX + 1)(X2 − bX + 1).

(c) If p is odd and neither −1 nor 2 is a square, since Z×
p is a cyclic group of even order,

we know −1, 2 are odd order elements, therefore then their product −2 is an even
order element, hence a square, say −2 = c2. Then we have

X4 + 1 = (X2 − 1)2 − (cX)2 = (X2 − cX − 1)(X2 + cX − 1).


